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IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes
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M Two-stage inverse rendering pipeline with Transformers as backbone: single-6 single-4 multi Li’20 [23] é',
mj . 1. albedo, roughness, depth, normals; Model Size MB) 7,305 6,256 1,539 795 L
- ni PR : f . Inference (ms)  141.9 1259 919 45.2 L2 9
v 2. per-pixel lighting (spherical Gaussian (SG) mixture). ARADAN Yoo Sy E
' / Full-supervision using ground truth is imposed on all estimations in Stage L+ 1214 1285 1254 1872 =
B b 1. In Stage 2, taking estimation of SG, a lighting renderer renders a per- Table 5. Analysis on multiple design choices: IRISformer (single-
1 \ Bttention 4 pixel lighting map, on which we may impose a fully-supervised lighting ~ task with 6 or 4 layers in BRDFGeoNet, multi-task with 4 layers),
and CNN-based architecture from Li ez al. [23] on OR [23].

reconstruction error, and a self-supervised image re-rendering error to

IRISformer, a specific instantiation of a dense vision transformer, for inverse rendering in both single-

task and multi-task settings. jointly constrain all estimations. [1] L? et al., 2020, Inverse Rendering for Complex Indoor Scenes
. . . . . . [2lLietal, 20|21‘OpenR°°mS iall ing indoor lighti Method Finetuning Datasets WHDRJ, Method Mean(°)| Med.(°)| Depth}
Given a single real-world image, (upper-left) IRISformer simultaneously infers material (albedo and We also explore single-task and multi-task versions to account for trade- Lﬂ Saron eta ; 22001193, Flast_sp_atla y-varying indoor lighting TRISformer (mult) ORTITW 31 IRTSformer (mult)  23.5 163 0.162
. . . . . . R . arron et al., , Intrinsic scene properties . YTy IRISformer (single) 20.2 134 0.132
IRIS 1 OR+IW 12.0 g
roughnes;), geomgtry'(dept'h and normals), and spatlallijarylng.Ilghtmg of th.e scene. Thg estllmatlon off between model capacity and model size /1. [5] Gardner et al., 2017, Learning to predict indoor illumination Ijﬂ;llef[z(i‘]ng ) OR:HW 2 Li21 23] 253 180 0171
enables virtual object insertion where we demonstrate high-quality photorealistic renderings in [6] Li et al., 2018, CGlntrinsics References Li20 [19] COMATW 15.9 Li'20[19] 24.1 173 0.184
challenging lighting conditions compared to previous works [1,2] (lower-left). NIR’19 [33] CGP+IW 16.8 Zth 1?7[&’%] % :Z’; )
CGlntrinsics’18 [20] CGIHIW 175 ang : =8 -

Motivated by the intuition that the long-range attention learned
by transformers is ideally suited to reason long-range interactions
to account for shadows, highlights and interreflections—>, we
propose to use Transformers in place of CNNs in inverse rendering
pipeline improve estimations of all modalities.

A The learned attention is visualized for selected patches,
indicating global context and implicitly learned semantic notions.
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* Training: our in-house developed OpenRooms
dataset [2] for large-scale photorealistic
renderings of indoor scenes, with ground truth
full 3D geometry, material, lighting and
semantics. OpenRooms is used to train the entire
pipeline from scratch, with full supervision on all
tasks -.

*  Evaluation:

* albedo estimation after finetuning: IIW dataset
* geometry estimation (depth, normals) after finetuning: NYUv2 dataset
* object insertion/material editing: natural images dataset from Garon et. al [3].

OpenRooms:
Creating Photorealistic Indoor Scenes

Re-rendered

Normals Lighting

e first evaluate our model against a CNN-based
baseline from Li et. al->.

In the above sample I with strong highlights and
complex scene geometry, we achieve much better
estimations in all modalities, for example on the
ground area and the chairs, our results are much
more spatially consistent, with less artifacts and
more details. We also achieve better decoupling of
albedo from geometry and lighting.

Method Al Rl D/ N LI I L+
IRISformer (multi) ~ 0.51 5.52 1.72 2.05 12.50 1.15 12.54
IRISformer (multi+BS) 0.51 5.50 1.71 2.05 12.47 1.15 12.58
IRISformer (single)  0.43 5.50 1.42 1.89 12.04 0.99 12.14
IRISformer (single+BS) 0.43 548 1.44 1.89 12.08 0.97 12.17
Ours (direct) - - - - 1229 1.29 1242
Li'21 [23] 0.52 6.31 2.20 2.61 18.63 0.88 18.72
Li'21+BS [23] 0.48 6.30 191 2.61 18.61 0.88 18.70

Table 1. Errors of BRDF, geometry and lighting with a base of
1072 on OpenRooms [23]. Lower is better. For lighting estimation,
L is the lighting reconstruction error, I is the rendering error and
L+ is the combined lighting loss for which LightNet is trained.

Table 2. Intrinsic decomposition on ITIW [4]. Lower is better.

Table 3. Normal (mean and median) and depth (mean on inverse
depth) prediction results on NYUv2 [34]. Lower is better.

Jointly evaluate geometry and
lighting via rendering virtual
objects into the scene.

Sample 1: better highlights by

Ours

ours, on the center object /.
Sample 2&3: more globally
spatially consistent across
bunnies in multiple locations,
in both the lighting intensities
and directions—.

We also carry out an A/B study
using the insertion results,,
and material editing .

Gardner’17 [11] Garon’19 [12] Li’21 [23] Ground Truth
0.24 0.30 0.47 0.58

Table 4. A user study on object insertion, where we compare IRIS- [
former with each of the previous work or ground truth and report
the percentage of feedbacks where other method is considered to
be more photorealistic than ours.
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